In situ localisation of single-stranded DNA breaks in nuclei of a subpopulation of cells within regenerating skeletal muscle of the dystrophic mdx mouse.

نویسندگان

  • G R Coulton
  • B Rogers
  • P Strutt
  • M J Skynner
  • D J Watt
چکیده

Degeneration of muscle fibres during the early stages of Duchenne Muscular Dystrophy (DMD) is accompanied by muscle fibre regeneration where cell division and myoblast fusion to form multinucleate myotubes within the lesions appear to recapitulate the events of normal muscle development. The mechanisms that govern the expression of genes regulating differentiation of myoblasts in regenerating skeletal muscle are of great interest for the development of future therapies designed to stimulate muscle regeneration. We show here that single-stranded breaks in DNA are localised in nuclei, using an exogenously applied medium containing labelled deoxynucleotides and the Klenow fragment of DNA polymerase I. The nuclei of a sub-population of cells lying in the inflammatory infiltrate of lesions in the skeletal muscle of the muscular dystrophic mouse (mdx), a genetic homologue of DMD, were labelled in this fashion. By contrast, labelled cells were completely absent from the muscles of normal non-myopathic animals (C57BL/10) and non-lesioned areas of mdx muscles. Cells expressing the muscle-specific regulatory gene, myogenin, were also found within mononucleate cells and myotubes within similar mdx muscle lesions. While we cannot yet say that the cells labelled by the DNA polymerase reaction are in fact differentiating, they were found only in significant numbers within mdx muscle lesions where new muscle fibres appear, providing strong circumstantial evidence that they are intimately associated with the regenerative process. Using a range of nucleases and different DNA polymerases, we show that the DNA polymerase-labelling reaction observed was DNA-dependent and most probably due to infilling of naturally occurring single-stranded gaps in DNA. Since the regenerative process in human Duchenne Muscular Dystrophy is apparently less effective than that seen in mdx mice, continued study of single-stranded DNA breaks may help to elucidate further the mechanisms controlling the expression of genes that characterise the myogenic process during skeletal muscle regeneration. Such findings might be applied in the development of future therapies designed to stimulate muscle regeneration in human dystrophies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CREB Is Activated by Muscle Injury and Promotes Muscle Regeneration

The cAMP response element binding protein (CREB) plays key roles in differentiation of embryonic skeletal muscle progenitors and survival of adult skeletal muscle. However, little is known about the physiologic signals that activate CREB in normal muscle. Here we show that CREB phosphorylation and target genes are induced after acute muscle injury and during regeneration due to genetic mutation...

متن کامل

Skeletal muscle engraftment potential of adult mouse skin side population cells.

Adult bone marrow and skeletal muscle have been shown to contain a subpopulation of cells, called side population (SP) cells, that can be isolated with the fluorescence-activated cell sorter. We used a similar method to identify SP cells in the skin of adult mice. These cells express surface markers similar to SP cells isolated from skeletal muscle, but differ from bone marrow SP cells and do n...

متن کامل

Genetic correction of dystrophin deficiency and skeletal muscle remodeling in adult MDX mouse via transplantation of retroviral producer cells.

Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a v...

متن کامل

Satellite cells from dystrophic muscle retain regenerative capacity

Duchenne muscular dystrophy is an inherited disorder that is characterized by progressive skeletal muscle weakness and wasting, with a failure of muscle maintenance/repair mediated by satellite cells (muscle stem cells). The function of skeletal muscle stem cells resident in dystrophic muscle may be perturbed by being in an increasing pathogenic environment, coupled with constant demands for re...

متن کامل

Evidence for a myogenic stem cell that is exhausted in dystrophic muscle.

Injection of the myotoxin notexin, was found to induce regeneration in muscles that had been subjected to 18 Gy of radiation. This finding was unexpected as irradiation doses of this magnitude are known to block regeneration in dystrophic (mdx) mouse muscle. To investigate this phenomenon further we subjected mdx and normal (C57Bl/10) muscle to irradiation and notexin treatment and analysed the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 102 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1992